Home
Class 7
MATHS
1) (4a-2a-3c)^2 2) (2a-3b)^3...

1) (4a-2a-3c)^2 2) (2a-3b)^3

Promotional Banner

Similar Questions

Explore conceptually related problems

Expand (4a-2b-3c)^2

Simplify (a+b)(2a-3b+c)-(2a-3b)c.

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a!=0 and the line 2b x+3c y+4d=0 passes through the points of intersection of the parabolas y^2=4a x and x^2=4a y , then (a) d^2+(2b+3c)^2=0 (b) d^2+(3b+2c)^2=0 (c) d^2+(2b-3c)^2=0 (d)none of these

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

Simplify: a^2b(a-b^2)+a b^2(4a b-2a^2)-a^3b(1-2b)

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

If (a-2b-3c+4d)(a+2b+3c+4d) = (a+2b-3c-4d)(a-2b+3c-4d) then 2ad = "(a) 3bc (b) bc (c) 5bc (d) 2bc"

a^2b^3\ X\ 2a b^2 is equal to: (a) 2a^3b^4 (b) 2a^3b^5 (c) 2a b (d) a^3b^5

Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3