TRIANGLE

Promotional Banner

Similar Questions

Explore conceptually related problems

In that figure, if Delta ABE ~= Delta ACD , show that Delta ADE ~= Delta ABC .

In the figure, DEFG is a square and angle BAC = 90^(@). Prove that (A) Delta AGF ~ Delta DBG (B) Delta AGF ~ Delta EFC (C) Delta DBG ~ Delta EFC

If Z=(A^(4)B^(1/3))/(CD^(3/2)) ,than relative error in Z (Delta Z)/(Z) is equal to (a) ((Delta A)/(A))^(4)+((Delta B)/(B))^(1/3)-((Delta C)/(C))-((Delta D)/(D))^(3/2) (b) 4((Delta A)/(A))+((1)/(3))((Delta B)/(B))+((Delta C)/(C))+((3)/(2))((Delta D)/(D)) (c) 4((Delta A)/(A))+(1)/(3)((Delta B)/(B))-((Delta C)/(C))-((3)/(2))((Delta D)/(D)) (d) ((Delta A)/(A))^(4)+(1)/(3)((Delta B)/(B))+((Delta C)/(C))+(3)/(2)((Delta D)/(D))

If Delta = a^(2)-(b-c)^(2), Delta is the area of the Delta ABC then tan A = ?

If Delta ABC~Delta EDF and Delta ABC is not similar to Delta DEF then which of the following is not ture ?