Home
Class 12
MATHS
int(pi/6)^(pi/4) 1/(sinxcosx)dx...

`int_(pi/6)^(pi/4) 1/(sinxcosx)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx . Then

Evaluate the following definite integral: int_(-pi//4)^(pi//4)1/(1+sin x)dx

Evaluate the definite integrals int_(pi/6)^(pi/4) cose cxdx

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

If int_(pi/4)^((3pi)/4) x/(1+sinx)dx=k(sqrt(2)-1) , then k = (A) 0 (B) pi (C) 2pi (D) none of these

Evaluate int_(pi//6)^(pi//4)cosecxdx

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

Evaluate: int_(-pi/4)^(npi-pi/4)|sinx+cosx|dx

Evaluate: int_(-pi/4)^(npi-pi/4)|sinx+cosx|dx