Home
Class 12
MATHS
4) If x + y + z = 0, show that [[1,1,1],...

4) If x + y + z = 0, show that `[[1,1,1],[x,y,z],[x^3 , y^3 ,z^3]] = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^x = 3^y =12^z show that 1/z= 1/y+2/x

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

If x+y+z=0 show that x^3+y^3+z^3=3x y z .

If x,y,z are dinstinct and |[x,x^3,x^4-1],[y,y^3,y^4-1],[z,z^3,z^4-1]|=0 then prove that (xyz)(xy+yz+zx)=(x+y+z)

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[[x,0, 0],[ 0,y,0],[ 0, 0,z]] , is (a) [[x^(-1),0 ,0 ],[0,y^(-1),0],[ 0, 0,z^(-1)]] (b) x y z[[x^(-1),0 ,0],[ 0,y^(-1),0],[ 0, 0,z^(-1)]] (c) 1/(x y z)[[x,0, 0],[ 0,y,0],[ 0, 0,z]] (d) 1/(x y z)[[1, 0, 0],[ 0 ,1, 0],[ 0, 0, 1]]

If z= x + yi and |2z + 1| = |z- 2i| , show that 3(x^(2) + y^(2)) + 4(x-y)=3

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .

If x!=0,y!=0,z!=0 and |[1+x,1,1],[1+y,1+2y,1],[1+z,1+z,1+3z]|=0 , then x^(-1)+y^(-1)+z^(-1) is equal to a.1 b.-1 c.-3 d. none of these

For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z^2 ,1+p z^3]|=(1+p x y z)(x-y)(y-z)(z-x) .