Home
Class 11
MATHS
(1+sqrt(5))^(4)+(1-sqrt(5))^(4)=?...

`(1+sqrt(5))^(4)+(1-sqrt(5))^(4)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+sqrt5)^4+(1-sqrt5)^4=?

The value of cos48cos12 (A) (sqrt(5)+3)/(8) (B) (3-sqrt(5))/(2) (C) (sqrt(5)+1)/(4) (D) (sqrt(5)-1)/(4)

If sin2 theta=cos3 theta and theta is an acute angle,then sin theta equal (a) (sqrt(5)-1)/(4) (b) -((sqrt(5)-1)/(4))( c) (sqrt(5)+1)/(4) (d) (-sqrt(5)-1)/(4)

The lengths of the sides of a right triangle given by a (A) (1+sqrt(5))/(4), (B) (1+sqrt(5))/(2) (C) 1+sqrt(5), (D) (1-sqrt(5))/(2)

sqrt(5){(sqrt(5)+1)^(50)-(sqrt(5)-1)^(50)}

Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6) (ii) (sqrt(5)+sqrt(2))^(4)-(sqrt(5)-sqrt(2))^(4)

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

cot((sin^(-1)1)/(sqrt(5))+(sin^(-4)2)/(sqrt(5)))

A (-1,4),B[1,-4) and C(5,4) are the vertices of a triangle.Then,the length of the altitude from A onto BC is (A) (12)/(5) (B) (12)/(sqrt(5)) (C) (12)/(5sqrt(5)) (D)3

(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-sqrt(4))=?