Home
Class 12
MATHS
int(e^(x-1))/(1-e^-x)dx=?...

`int(e^(x-1))/(1-e^-x)dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(-x))/(1+e^(x))dx=

int(e^(x)-1)/(e^(x)+1)dx

int(e^(x)-1)/(e^(x)+1)dx

int(e^(x)-1)/(e^(x)+1)dx

int(e^x dx)/(1-e^(x))

Evaluate: int(e^x-1)/(e^x+1)dx

Evaluate: (i) int xe^(x)^^2dx (ii) int(e^(2x))/(1+e^(x))dx

If int(e^(x)-1)/(e^(x)+1)dx=f(x)+C, then f(x) is equal to

int (e^x+1)/(e^x-1)dx=

Evaluate the following definite integrals: int_0^1(e^(-x))/(1+e^x)dx