Home
Class 12
MATHS
Maximum of sinx+cosx is at (a)x=0 (b...

Maximum of `sinx+cosx` is at
(a)`x=0`
(b) `x=pi/4`
(c) `x=pi/2`
(d) `x=(3pi)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^oo(sinx)/xdx=pi/2,t h e nint_0^oo(sin^3x)/x dx is equal to (a)pi/2 (b) pi/4 (c) pi/6 (d) (3pi)/2

f(x)=sin+sqrt(3)cosx is maximum when x= pi/3 (b) pi/4 (c) pi/6 (d) 0

For f(x)=sin^2x ,x in (0,pi) point of inflection is: pi/6 (b) (2pi)/4 (c) (3pi)/4 (d) (4pi)/3

The angle of intersection of the curves y=2\ s in^2x and y=cos2\ x at x=pi/6 is pi//4 (b) pi//2 (c) pi//3 (d) pi//6

The sum of all the solution in [0,4 pi] of the equation tan x+cot x+1=cos(x+(pi)/(4))is (a) 3 pi(b)(pi)/(2)(c)(7 pi)/(2) (d) 4 pi

The smallest positive root of the equation tan x-x=0 lies in (0,(pi)/(2)) (b) ((pi)/(2),pi)(pi,(3 pi)/(2)) (d) ((3 pi)/(2),2 pi)

Angle between the tangents to the curve y=x^(2)-5x+6 at the points (2,0) and (3,0) is : (a) (pi)/(3) (b) (pi)/(2)( c) (pi)/(6) (d) (pi)/(4)

If cos(sinx)=0, then x lies in (a) (pi/4,pi/2)uu(pi/2,\ pi) (b) (-pi/4,\ 0) (c) (pi,(3pi)/2) (d) null set

int_(0)^( pi)(x tan x)/(sec x+cos x)dx is (pi^(2))/(4)(b)(pi^(2))/(2)(c)(3 pi^(2))/(2) (d) (pi^(2))/(3)

The value of the integral int_(pi//2)^(pi//2)(x^2ln(pi+x)/(pi-x))cosx\ dx is a. 0 b. (pi^2)/2-4 c. (pi^2)/2+4 d. (pi^2)/2