Home
Class 10
MATHS
In a triangle ABC Prove that a sin A-b s...

In a triangle ABC Prove that `a sin A-b sin B=c sin(A-B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot

In any triangle ABC, prove that sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B) = 3sinAsinBsinC

In triangle ABC prove that (i) sinA=sin(B+C)" "(ii) sin2A=-sin(2B+2C) (iii) cosA=-cos(A+B)" " (iv) tan((A+B)/2)=cot. C/2

In any triangle A B C , prove that: \ asin(B-C)+b sin(C-A)+csin(A-B)=0

In any triangle ABC ,prove that (a-b cos C)/( c-b cos A ) = (sin C ) /( sin A)

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any triangle A B C , prove that following: \ a(sin B-sin C)+b( sin C- sin A)+c(sin A-sin B)=0

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

In any triangle ABC, show that : 2a sin (B/2) sin (C/2)=(b+c-a) sin (A/2)