Home
Class 11
MATHS
the value of i+i^3+i^4+i^5+i^6...

the value of `i+i^3+i^4+i^5+i^6`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

The value of i^2 + i^4 + i^6 + i^8.... upto (2n+1) terms , where i^2 = -1, is equal to:

Find the value of 1+i^2+i^4+i^6++i^(2n)

The value of (i^5+i^6+i^7+i^8+i^9)/(1+i) is

The value of i + i^(2) + i^(3) + i^(4) is ________

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Find the value of (i) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574)) (i) -1 (ii) (1+i)^6+(1-i)^6

Find the value of (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))-1 (1+i)^6+(1-i)^6

Find the value of (1+ i)^(6) + (1-i)^(6)

The value of (1+i)^4+(1-i)^4 is