Home
Class 12
MATHS
Solve tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(...

Solve `tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)a`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x; tan^(-1)(1/2)+tan^(-1)2=tan^(-1)x

Show that ,,tan^(-1)(1)/(2)+tan^(-1)(2)/(11)=tan^(-1)(3)/(4)

Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3

Solve for x:tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((8)/(31))

Prove that tan^(-1). 1/2 +tan^(-1). 2/11 = tan^(-1) . 3/4

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

tan^(-1)2-tan^(-1)1=tan^(-1)((1)/(3))

Show that tan^(-1)(2/11) + tan^(-1)( 7/24) =tan^(-1) (1/2)

Solve: tan^(-1)((1)/(2))+tan^(-1)((1)/(3))+tan^(-1)((3)/(5))+tan^(-1)((1)/(7))