Home
Class 12
MATHS
The minimum value of the function f(x)=2...

The minimum value of the function `f(x)=2tan x+3cot x` where `x in(0, (pi)/(2))` is
(A) `sqrt(6)`
(B) `2sqrt(6)`
(C) `6sqrt(2)`
(D) `12`

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x) =tan(x +pi/6)/tanx is:

The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

The values of parameter a for which the point of minimum of the function f(x)=1+a^2x-x^3 satisfies the inequality (x^2+x+2)/(x^2+5x+6)<0a r e (a) (2sqrt(3),3sqrt(3)) (b) -3sqrt(3),-2sqrt(3)) (c) (-2sqrt(3),3sqrt(3)) (d) (-2sqrt(2),2sqrt(3))

Evaluate : int_(0)^((pi)/2)) (sqrt(cot x))/(sqrt(cot x)+ sqrt(tan x)) dx

The domain of the function f(x)=sqrt(x^(2)-5x+6)+sqrt(2x+8-x^(2)) , is

The function f(x)=x(x+4)e^(-x//2) has its local maxima at x=adot Then (a) a=2sqrt(2) (b) a=1-sqrt(3) (c) a=-1+sqrt(3) (d) a=-4

If f(x)=sqrt(1+cos^2(x^2)),t h e nf^(prime)((sqrt(pi))/2) is (a) (sqrt(pi))/6 (b) -sqrt(pi//6) (c) 1//sqrt(6) (d) pi//sqrt(6)

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

The least value of the function f(x)= 2cosx +x in the closed interval [0,pi/2] is: A. 2 B. pi/6 + sqrt3 C. pi/2 D. The least value does not exist

The discriminant of the quadratic equation 4x^2 - 6x +3 = 0 is (A) 12 (B) 84 (C) 2 sqrt3 (D) -12