Home
Class 11
MATHS
(1 - sintheta + costheta)/(sintheta + co...

`(1 - sintheta + costheta)/(sintheta + costheta -1) = (1+costheta)/sintheta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

Prove: ((1+sintheta-costheta)/(1+sintheta+costheta))^2=(1-costheta)/(1+costheta)

Prove that: (sintheta-costheta+1)/(sintheta+costheta-1)=1/(sectheta-tantheta)

Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta.[{:(sintheta,-costheta),(costheta,sintheta):}]=I.

Prove that (1-sintheta+costheta)^2=2(1+costheta)(1-sintheta)

Prove that (sintheta-costheta+1)/(sintheta+costheta-1)=1/(sectheta-tantheta) , using the identity sec^2theta=1+tan^2theta

(sintheta)/(1+costheta) is equal to (a) (1+costheta)/(sintheta) (b) (1-costheta)/(costheta) (c) (1-costheta)/(sintheta) (d) (1-sintheta)/(costheta)

Prove: (1-costheta)/(sintheta)=(sintheta)/(1+costheta)

Simplify the following : cos theta [{:(costheta,-sintheta ),(sintheta,costheta ):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?