Home
Class 12
MATHS
If (x^(2)-x)/(1-ax) attains all real val...

If `(x^(2)-x)/(1-ax)` attains all real values (x in R) then possible value of a are

Promotional Banner

Similar Questions

Explore conceptually related problems

Find all the possible values of 1/x for x>3 .

If (x^2+a x+3)/(x^2+x+a) takes all real values for possible real values of x , then a. a^3-9a+12 =0 c. ageq1/4 d. a<1/4

If (x - p)/(x^(2) - 3x + 2) takes all real values for x in R then the range of P is

If x^(2)-2x-15=(x+r)(x+s) for all values of x, what is one possible value of r-s?

Find all possible values of sqrt(|x|-2) .

Let a and b be real numbers such that the function g(x)={{:(,-3ax^(2)-2,x lt 1),(,bx+a^(2),x ge1):} is differentiable for all x in R Then the possible value(s) of a is (are)

Find the values of a for which the expression (ax^2+3x-4)/(3x-4x^2+a) assumes all real values for all real values of x

Let p and q be real numbers such that the function f(x)={{:(p^(2)+qx","xge1),(-5px^(2)-6","xlt1):} is derivable for all x in R . Then sum of all possible values of p is

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

Let f(x)=(mx^2+3x+4)/(x^(2)+3x+4) , m in R . If f(x) lt 5 for all x in R then the possible set of values of m is :