Home
Class 11
MATHS
The straight line y=mx+c(m>0) touches th...

The straight line `y=mx+c(m>0)` touches the parabola `y^(2)=8(x+2)` then the minimum value taken by `c` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

The straight line x+y= k touches the parabola y=x-x^(2) then k =

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

If the line x + y = 1 touches the parabola y^(2) = kx , then the value of k is

The line y=mx+2 touches the hyperola 4x^(2)-9y^(2)=36 then m=

If the line y=mx+c is a normal to the parabola y^2=4ax , then c is

Show that the line 12 y - 20 x -9=0 touches the parabola y ^(2) = 5x.

If the line x+y=a touches the parabola y=x-x^2, then find the value of adot

If the line x+y=a touches the parabola y=x-x^2, then find the value of a .