Home
Class 12
MATHS
int(0)^(1)tan^(-1)x+cot^(-1)xdx...

`int_(0)^(1)tan^(-1)x+cot^(-1)xdx`

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int_(0)^(1)tan^(-1)xdx

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is____.

int_0^1 tan^-1xdx

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

If I_1=int_(-1)^1(tan^(-1)x+tan^(-1)(1/x))dx&I_2=int_(-1)^1(cot^(-1)x+cot^(-1)(1/x))dx , then (a) I_1=I_2+2pi (b) I_1=I_2 (c) I_2=2pi+I_1 (d) I_1=pi

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

int _(0)^(1) (tan ^(-1)x)/(x ) dx =

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals