Home
Class 12
MATHS
int(-1)^(1)x tan^(-1)xdx...

`int_(-1)^(1)x tan^(-1)xdx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: int_(-1)^(1)x tan^(-1)x dx

I=int_(0)^(1)tan^(-1)xdx

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

Let J=int_(0)^(1)cot^(-1)(1-x+x^(2))dx and K= int_(0)^(1)tan^(-1)xdx .If J=lambda K (lambda in N) , then lambda equals

STATEMENT-1 : int_(-3)^(3)|x|dx=9 STATEMENT-2 : int_(0)^(1)tan^(-1)xdx=(pi)/(4)-lnsqrt(2) STATEMENT-3 : int_(0)^(pi//2)(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx=(pi)/(4)

int_(0)^( pi)x sin^(-1)xdx

Evaluate: int_(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to