Home
Class 12
MATHS
int(0)^(4)tan xdx...

`int_(0)^(4)tan xdx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/4) tan^3xdx

evaluate: int_0^(pi/4)2tan^3xdx is

int_0^(pi/4)2tan^3xdx=1-log2

I=int_(0)^(1)tan^(-1)xdx

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

Prove that int_0^(pi/4) 2tan^3xdx=1-log2

int_0^(pi/4) (tanx-x)tan^2xdx

int_(0)^( pi/4)sec xdx

If the integral l_(n)=int_(0)^(pi//4)tan^(n)xdx is reduced to its lower integrals like l_(n-1),l_(n-2) etc., The value of (l_(3)+2l_(5))/(l_(1)) is

int_(0)^( pi/4)tan^(3)dx