Home
Class 12
MATHS
The maximum value of x^(2/x), xgt0 is...

The maximum value of `x^(2/x)`, `xgt0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The local maximum value of the function f(x)=(2/x)^(x^2),xgt0 , is

x and y be two variables such that xgt0 and xy=1 . Then the minimum value of x+y is

Find the maximum or minimum values of the function y=x+1/x for xgt0 .

If x^(2)=sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@) , then the value of x(xgt0) is

The vectors (x,x+1,x+2),(x+3,x+3,x+5) and (x+6,x+7,x+8) are coplanar for (A) all values of x (B) xlt0 (C) xgt0 (D) none of these

The value of x where xgt0 and tan(sec^(-1)(1/x))=sin(tan^(-1)2) is

f(x)={{:(3-x",","when",x le0, ),( x^(2)",", "when",xgt0):} is discontinuous at x=0

Evaluate: intdx/(x(logx)^m),xgt0