Home
Class 9
MATHS
(sqrt5+sqrt7)/(sqrt5-sqrt7)...

`(sqrt5+sqrt7)/(sqrt5-sqrt7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

(iii) (sqrt 5+ sqrt 3)/(sqrt5-sqrt3)+(sqrt5-sqrt3)/(sqrt5+sqrt3) =?

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)

(sqrt5 - sqrt3)/(sqrt5 + sqrt3) is equal to :

Simplify (sqrt5-sqrt2)(sqrt5+sqrt2)

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

If sqrt (7 sqrt (7 sqrt7 sqrt7 sqrt7)) = 7 ^(x) then find the value of x

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

If x=(sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3)) and y=(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3)) , then x+y+x y= (a) 9 (b) 5 (c) 17 (d) 7

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))