Home
Class 12
MATHS
dy/dx=a^2/(x+y)^2...

`dy/dx=a^2/(x+y)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: x+y dy/dx=(a^2((x dy/dx-y))/(x^2+y^2))

Solve (dy)/(dx)=((x+y)^(2))/((x+2)(y-2))

dy/dx=(x-2y)/(2x+y)

dy/dx=(x+2y)/(2x+y)

If (dy)/(dx)=(2^(x+y)-2^(x))/(2^(y)),y(0)=1 then y(1) is equal to

(dy)/(dx)=2((y+2)^(2))/((x+y-1)^(2))

(a) dy/dx = (xy)/(x^2+y^2)

If a curve follows the diffferential equation dy/dx=(2^(x+y)-2^x)/2^y and curve passes through the point (0,1) then the value of y(2) is

Solve: 2y dy/dx=e^((x^2+y^2)/x)+(x^2+y^2)/x-2x