Home
Class 9
MATHS
(sqrt2+sqrt2)/sqrt2 =...

`(sqrt2+sqrt2)/sqrt2 =`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of "log"_(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))) , is

Find (sqrt3 - sqrt 2)/(sqrt 3+sqrt 2) -(sqrt3 + sqrt 2)/(sqrt 3-sqrt 2) +1/(sqrt2+1)-1/(sqrt2-1)

The value of (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9)) is ________.

The value of (log)_(sqrt(4+2sqrt(2))sqrt(4-2sqrt(2)))2^9 is...........

if sqrt2=1.414and sqrt3=1.732 then find the value of 4/(3sqrt3-2sqrt2)+3/(3sqrt3+2sqrt2)

Simplify: (2sqrt(2)+sqrt(3))/(2sqrt(2)-sqrt(3))

The expression sqrt(6+2sqrt3+2sqrt2+2sqrt6)-sqrt(3-2sqrt2) simplifies to :-

Show that: sqrt(2+sqrt(2+sqrt(2+2cos8theta)))=2costheta,0

The value of x=sqrt(2+sqrt(2+sqrt(2+...))) is (a) -1 (b) 1 (c) 2 (d) 3

Simplify: (2sqrt(3)-sqrt(2))/(2sqrt(3)+sqrt(2))