Home
Class 12
MATHS
"If "x^(y)=e^(x-y)," prove that "(dy)/(d...

`"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If y=x^x then prove that is (dy)/(dx)=x^(x)log_(e)(ex) .

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that (dy)/(dx)=log((x-1)/(1+x))

Solve (dy)/(dx)+(y)/(x)=log x.

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)