Home
Class 12
MATHS
The value of the definite integral int(0...

The value of the definite integral `int_(0)^(ln2)(x-ln2)e^(x)e^ln2e^(ln((1+e^(x)))^(-2))dx` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the definite integral int e^(-x^4) (2+ln(x+sqrt(x^2+1))+5x^3-8x^4)dx is equal to

int_(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

The value of definite integral I=int_(ln((sqrt3)/(2)))^(ln((2)/(sqrt3)))ln.((2-tan^(7)x)/(2+tan^(7)x))dx is equal to

Evaluate the following definite integral: int_1^e(e^x)/x(1+x log x)dx

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of int(x e^ln(sinx)-cosx)dx is equal to

lim_(xrarr0^(+)){ln((x^(7)+2x^(6)e+x^(5)e^(2)))-ln(x^(2)sin^(3)x)} is equal to