Home
Class 12
MATHS
In a triangle ABC Let BC=a CA =b AB=c an...

In a triangle ABC Let BC=a CA =b AB=c and` r1 r2&r3 `be the radii of ex-circles opposite to vertices A B&C respectively.If `r1=2r2=2r3 `then 3(a/b)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I In a Delta ABC, if a lt b lt c and r is inradius and r_(1) , r_(2) , r_(3) are the exradii opposite to angle A,B,C respectively, then r lt r_(1) lt r_(2) lt r_(3). Statement II For, DeltaABC r_(1)r_(2)+r_(2)r_(3)+r_(3)r_(1)=(r_(1)r_(2)r_(3))/(r)

In DeltaABC, R, r, r_(1), r_(2), r_(3) denote the circumradius, inradius, the exradii opposite to the vertices A,B, C respectively. Given that r_(1) :r_(2): r_(3) = 1: 2 : 3 The sides of the triangle are in the ratio

In DeltaABC, R, r, r_(1), r_(2), r_(3) denote the circumradius, inradius, the exradii opposite to the vertices A,B, C respectively. Given that r_(1) :r_(2): r_(3) = 1: 2 : 3 The greatest angle of the triangle is given by

In DeltaABC, R, r, r_(1), r_(2), r_(3) denote the circumradius, inradius, the exradii opposite to the vertices A,B, C respectively. Given that r_(1) :r_(2): r_(3) = 1: 2 : 3 The value of R : r is

ln a triangle with sides a, b, c if r1 gt r2 gt r3 (which are the ex-radii), then

In a triangle ABC , if r_(1) =2r_(2) =3r_(3) , then a:b:c =

In triangle ABC, if r_(1)+r_(2)=3R and r_(2)+r_(3)=2R , then

Let ABC be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA and AB, respectively, If r_(2)" and "r_(3) are the radii of circles inscribed in the quadrilaterls AFIE, BDIF and CEID respectively, then prove that r_(1)/(r-r_(1))+r_(2)/(r-r_(2))+r_(3)/(r-r_(3))=(r_(1)r_(2)r_(3))/((r-r_(1))(r-r_(2))(r-r_(3)))

In triangleABC , If r_(1), r_(2), r_(3) are exradii opposites to angles A,B and C respectively. Then (1/r_(1) +1/r_(2)) (1/r_(2)+1/r_(3)) (1/r_(3)+1/r_(1)) is equal to

In a triangle ABC if sides a = 13, b =14 and c = 15, then reciprocals of r_(1),r_(2),r_(3) are in the ratio