Home
Class 12
MATHS
lim( y -> 0 ) ( sqrt(1 - y^2) - sqrt(1 +...

`lim_( y -> 0 ) ( sqrt(1 - y^2) - sqrt(1 + y^2) )/y^2 `

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(y to 0) ((y - 2) + 2sqrt(1 + y + y^(2)))/(2y) is equal to _______

Prove that sin ^ (- 1) x + cos ^ (- 1) y = (tan ^ (- 1) (xy + sqrt ((1-x ^ (2)) (1-y ^ (2)))) ) / (y sqrt (1-x ^ (2)) - x sqrt (1-y ^ (2)))

lim_(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^4

lim_(y->oo)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

int_0^1y^2sqrt(1-y^2)dy

int_ (0) ^ (1) (log y) / (sqrt (1-y ^ (2))) dy

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi, Prove x sqrt (1-x ^ (2)) + y sqrt (1-y ^ (2) ) + z sqrt (1-z ^ (2)) = 2xyz

If f(y) = (y)/(sqrt(1-y^(2))), g(y) = (y)/(sqrt(1+y^(2))) , then (fog) y is equal to

The Integrating Factor of the differential equation (1-y^2)(dx)/(dy)+y x=a y(-1