Home
Class 12
MATHS
Show : lim( (x,y) -> ( 0,0 ) ) ( 1/|x...

Show :
`lim_( (x,y) -> ( 0,0 ) ) ( 1/|x| + 1/|y| ) = oo`

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_( x -> oo ) a^x = --- (if 0 < a < 1 )

Show that lim_(x rarr 0^+) (1+x)^(1/x) =e

To show lim_( x to 0) "x sin" 1/x =0 .

lim_ (x rarr0) ((x + y) sec (x + y) -y sec y) / (x)

underset x rarr oo lim_ (x rarr oo) ((x ^ (2) +1) / (x + 1) -ax-b) = 0 then find

Show that lim_(xrarr0)(1)/(|x|)=oo.

lim_(x rarr oo)(1)/(x)=0

lim_(x rarr 0) x^2/y = 0

lim_ (x rarr oo) 4x ((pi) / (4) -tan ^ (- 1) ((x + 1) / (x + 2))) = y ^ (2) + 4y + 5

If a = Sigma_(n=0)^(oo) x^(n), b = Sigma_(n=0)^(oo) y^(n), c = Sigma__(n=0)^(oo) (xy)^(n) " Where " |x|, |y| lt 1 , then -