Home
Class 12
MATHS
int |x|/xdx= (a) x+c (b) -x+c (c) ...

`int |x|/xdx=`
(a) `x+c`
(b) `-x+c`
(c) `|x|+c`
(d) `x^2+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_a^b |x|/xdx, altb , is equal to (A) b-a (B) b+a (C) |b|-|a| (D) |b|+|a|

Find x in terms of a , b and c : (a)/(x - a) + (b)/(x - b) = (2 c)/(x - c) , x - a , b , c

Assertion (A) : int x^(2) dx = (x^(3))/(3) + c Reason (R) : int e^xdx = xe^x + c

The determinant |y^2-x y x^2a b c a ' b ' c '| is equal to a. |b x+a y c x+b y b^(prime)x+a ' y c^(prime)x+b ' y| b. |a x+b y b x+c y a^(prime)x+b ' y b ' x+c ' y| c. |b x+c y a x+b y b^(prime)x+c ' y a^(prime)x+b ' y| d. |a x+b y b x+c y a^(prime)x+b ' y b^(prime)x+c ' y|

int e^(x)(1-cot x+cot^(2)x)dx=e^(x)cot x+C (b) e^(x)cot x+C(c)e^(x)cos ecx+C(d)e^(x)cos ecx+C

int(1-(x^(2))/(2!)+(x^(4))/(4!)-......)dx= A) sin x+c B) -sin x+c C) cos x+c D) -cos x+c