Home
Class 12
MATHS
Evaluate : lim( n -> oo ) ( n + 1 )^2...

Evaluate :
`lim_( n -> oo ) ( n + 1 )^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Evaluate: lim_ (n rarr oo) (1) / (n ^ (2)) sum_ (k = 0) ^ (n-1) [k int_ (k) ^ (k + 1) sqrt ((xk) (k + 1-x)) dx]

Evaluate: lim_ (n rarr oo) (1 * 2 + 2 * 3 + 3 * 4 + ... + n (n + 1)) / (n ^ (3))

Evaluate, lim_ (n rarr oo) ((1 + 4 ^ ((1) / (n))) / (2)) ^ (n)

Evaluate lim _( n to oo) sum_( r =1) ^(n -1) (1)/(sqrt(n ^(2) -r ^(2)))

Evaluate: lim_(n rarr oo)[(1)/((n+1)^(2))+(1)/((n+2)^(2))+...+(1)/((2n)^(2))]

Using Sandwich theorem, evaluate lim_ (n rarr oo) ((1) / (1 + n ^ (2)) + (1) / (2 + n ^ (2)) + ...... + (n) / (n + n ^ (2)))

evaluate lim_ (n rarr oo) [(1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (2)) + ......... + (1) / (3 ^ (n))]