Home
Class 12
MATHS
int(0)^(1)sin^(-1)sqrt((x)/(x+1))dx...

`int_(0)^(1)sin^(-1)sqrt((x)/(x+1))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

If the value of the definite integral int_0^1(sin^(-1)sqrt(x))/(x^2-x+1)dx is (pi^2)/(sqrt(n)) (where n in N), then the value of n/(27) is

int_(0)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

Evaluate : int_(0)^(1)(e^(sqrt(x)))/(sqrt(x))dx

int_0^1 sqrt((1-x)/(1+x)) dx

int_0^(1)(sin^(- 1)x)/x dx=

int (x-1)sqrt(x+1)dx

int_0^(1/2) e^(sin^-1x)/sqrt(1-x^2)dx