Home
Class 11
MATHS
Prove that [(1+sintheta)^2+(1-sintheta)^...

Prove that `[(1+sintheta)^2+(1-sintheta)^2]/(2cos^2theta)=(1+sin^2theta)/(1-sin^2theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: ((1+sin theta)^(2)+(1-sin theta)^(2))/(cos^(2)theta)=2((1+sin^(2)theta)/(1-sin^(2)theta))

Prove that-: cos^4theta/(1-sin^4theta)=(1-sin^2theta)/(1+sin^2theta)

Prove that (1)/(2){(sin theta)/(1+cos theta)+(1+cos theta)/(sin theta)}=(1)/(sin theta)

Prove that (1-sin theta+cos theta)^(2)=2(1+cos theta)(1-sin theta)

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

Prove that : (1+sin2 theta-cos 2theta)/(sin theta+cos theta)=2sin theta

prove that (cos theta)/(1-sin theta)+(cos theta)/(1+sin theta)=(2)/(cos theta)

Prove that (1+sin2 theta)/(1-sin2 theta)=((1+tan theta)/(1-tan theta))^(2)

Prove that (1+sin2 theta)/(1-sin2 theta)=((1+tan theta)/(1-tan theta))^(2)