Home
Class 12
MATHS
int(0)^(1)(x^(b)-1)/(log x)dx...

`int_(0)^(1)(x^(b)-1)/(log x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate I(b)=int_(0)^(1)(x^(b))dx=int_(0)^(1)(x^(b)-1)/("ln"x)dx,bge0 .

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

Evaluate: int_(0)^(1) log (1/x-1)dx

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

The value of int_(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=