Home
Class 11
MATHS
Prove that sqrt[(1-costheta)/(1-costheta...

Prove that `sqrt[(1-costheta)/(1-costheta)]=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sqrt((1+costheta)/(1-costheta))="cosec"theta+cottheta

Prove that:sqrt((1+costheta)/(1-costheta))={cos e ctheta+cottheta,if0

Prove that- (1-costheta)/(1+costheta)=(1/(cosectheta+cottheta))^2

Prove that : (1-costheta)/(1+costheta)=(cottheta-cosectheta)^(2)

Prove that- (1-costheta)/(1+costheta)=(cosectheta-cottheta)^2

Prove that- (1+costheta)/(1-costheta)= (cosectheta+cottheta)^2

Evaluate sqrt((1-cos theta)/(1+costheta))

Prove that : (1-costheta)(1+costheta)(1+cot^(2)theta)=1

Prove that: sqrt((1-sintheta)/(1+s intheta))+sqrt((1+sintheta)/(1-s intheta)=){2/(costheta),if0lt=theta

prove that- (sintheta+1-costheta)/(costheta-1+sintheta)=(1+sintheta)/costheta