Home
Class 11
MATHS
Prove that (1+costheta)/(1-costheta)1/(1...

Prove that `(1+costheta)/(1-costheta)1/(1-cos^2theta)=1/(1-costheta)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (1-costheta)(1+costheta)(1+cot^(2)theta)=1

(1-costheta)/(1+costheta)+(1+costheta)/(1-costheta)=

sqrt((1+costheta)/(1-costheta))=

Prove that- (1-costheta)/(1+costheta)=(1/(cosectheta+cottheta))^2

int(costheta-cos2theta)/(1-cos theta)d theta=

Prove that, 1/(costheta-cos3theta)+1/(costheta-cos5theta)+1/(costheta-cos7theta)+…+to n terms = 1/(2sintheta) [cottheta-cot(n+1)theta]

Prove that : (1-costheta)/(1+costheta)=(cottheta-cosectheta)^(2)

Prove that- (1-costheta)/(1+costheta)=(cosectheta-cottheta)^2

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

If pi le theta le (3pi)/2 , then sqrt((1+cos theta)/(1-costheta))+sqrt((1-costheta)/(1+costheta)) is equal to :