Home
Class 12
MATHS
xdy/dx=sqrt(1-y^2)...

`xdy/dx=sqrt(1-y^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

xdy-ydx=sqrt(x^2-y^2)dx , y(1)=0. then area curve above x-axis on x in [1,e^pi] is

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

Solve xdy-ydx=sqrt(x^(2)+y^(2))dx

An equation of the curve satistying xdy-ydx=sqrt(x^(2)-y^(2))dx and y(1)=0 is

Solve the following differential equation: xdy-ydx=sqrt(x^(2)+y^(2))dx

Show that the given differential equation xdy-ydx=sqrt(x^(2)+y^(2)) dx is homogenous and solve it.