Home
Class 12
MATHS
(dy)/(dx)=(y)/(x)(log ( y/x ) +1)...

`(dy)/(dx)=(y)/(x)(log ( y/x ) +1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (dy)/(dx)+(y)/(x)=log x.

The solution of (dy)/(dx)=(x+y-1)+(x+y)/(log(x+y)), is given by

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

The solution of (dy)/(dx)+(y)/(x)=(1)/((1+log x+log y)^(2)) is given by

Solve the differential equation x(dy)/(dx)=y(log y - log x +1) .

Solve: (dy)/(dx)=e^(x+y) (ii) log((dy)/(dx))=a x+b y

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

Find (dy)/(dx) when y= (x^(log x)) ( log x)^(x), x gt 1

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)