Home
Class 8
MATHS
(x^2+2x-3)^2-3(x^2+2x-1)+8=0...

`(x^2+2x-3)^2-3(x^2+2x-1)+8=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise: (1)2x^(2)-x-6=0(2)a^(3)-0.216 (3) (x^(2)-3x)^(2)-8(x^(2)-3x)-20

IF ax^3+bx^2+cx+d = |(x^2,(x-1)^2, (x-2)^2),((x-1)^2 (x-2)^2, (x-3)^2), (x-2)^2, (x-3)^2, (x-4)^2)| , then d= (A) 1 (B) -8 (C) 0 (D) none of these

Solve: (2x+3)^2+(2x-3)^2=(8x+6)(x-1)+22

If x^2-3x-1=0 , then the value of (x^2+ 8x-1)(x^3+x^(-1))^-1 is: यदि x^2-3x-1=0 है, तो (x^2+ 8x-1)(x^3+x^(-1))^-1 का मान क्या होगा ?

Simplify (x+2)(x^(2)-6x+8)-(2x-3)(2x^(2)-x-1)

3x+2y=8 2x-3y=1

(e) (2x-3)/2 + ( 2x +(3x -1)/4) = 1/8

If (x-7)^3+(2x+8)^3+(2x-3)^3= 3 (x - 7) (2x +8) (2x-3) , then what is the value of x? यदि (x-7)^3+(2x+8)^3+(2x-3)^3= 3 (x - 7) (2x +8) (2x-3) है, तो x का मान क्या होगा ?

(x^(2)+3x+2)^(2)-8(x^(2)+3x)-4=0

(x+1)(x+2)(x+3)(x^(2)4x+8)(x-2)=0, then x belongs to