Home
Class 12
MATHS
If f(x) = (2-x^n)^(1/n), n > 0 then for ...

If `f(x) = (2-x^n)^(1/n), n > 0` then for `x > 0` the lower bound of `f(f(x)) +f[f[1/x]]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (a-x^n)^(1/n), a > 0 and n in N , then prove that f(f(x)) = x for all x.

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If f(x)=lim_(n->oo)n(x^(1/n)-1),then for x >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

If f(x) = (x^n-a^n)/(x-a) , then f'(a) is a. 1 b. 1/2 c. 0 d. does not exist

If f(x)=lim_(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal to

f:N to N, where f(x)=x-(-1)^(x) , Then f is

If f(x) = n , where n is an integer such that n le x lt n +1 , the range of f(x) is

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

If f(x)=(4+x)^(n),"n" epsilonN and f^(r)(0) represents the r^(th) derivative of f(x) at x=0 , then the value of sum_(r=0)^(oo)((f^(r)(0)))/(r!) is equal to

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is