Home
Class 12
MATHS
Prove that sin(cos^(-1)u)=cos(sin^(-1)u)...

Prove that `sin(cos^(-1)u)=cos(sin^(-1)u)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

u=sin(m cos^(-1)x),v=cos(m sin^(-1)x), provethat (du)/(dv)=sqrt((1-u^(2))/(1-v^(2)))

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1

Prove that: (cos40^(@)+cos50^(@))/(sin40^(@)+sin50^(@))=1

Prove that (sin36^(@)+cos36^(@))/(cos54^(@)+sin54^(@))=1

Prove that (sin32^(@)cos58^(@)+cos32^(@)sin58^(@))=1.

Prove that sin(-420^(@))(cos390^(@))+cos(-660^(@))(sin330^(@))=-1

Prove that (1+sin2A)/(cos2A)=(cos A+sin A)/(cos A-sin A)=tan((pi)/(4)+A)

Prove that [(1-sin A-cos A)^(2)=2(1-sin A)(1-cos A)]

Prove that (1+sin A+cos A)^(2)=2(1+sin A)(1+cos A)