Home
Class 11
MATHS
Maximum value of a for which range of fu...

Maximum value of a for which range of function `y=log_(2)(x^(2)-4x+a)` is R, is :
(A) 4
(B) 2
(C) -4
(D) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function y=(x+2)/(x^2-8x-4)

Find the domain and range of the function y=log_(e)(3x^(2)-4x+5) .

The range of the function f(x) = log_(3) (5+4x - x^(2)) , is

The range of the function f(x)=(x^2-x)/(x^2+2x) is R (b) R-[1] (c) R={-1/2,1} (d) none of these

Find the range of the following functions. f(x)=log_(e)(3x^(2)-4x+5)

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

Find the range of log_3{log_(1/2)(x^2+4x+4)}

If expression x^2-4cx+b^2gt0 for all x epsilon R and a^2+c^2ltab then range of the function (x+a)/(x^2+bx+c^2) is (A) (0,oo) (B) (0,oo) (C) (-oo,oo) (D) none of these

Range of the function f(x)= log_2(sqrt(x-2)+sqrt(4-x)) is

The range of function f(x) = sqrt(.^(x^2+4x)C_(2x^2+3)) is