Home
Class 12
MATHS
tan^(-1)((3)/(5))+tan^(-1)((1)/(4))=(pi)...

`tan^(-1)((3)/(5))+tan^(-1)((1)/(4))=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement 2: For x gt 0, Y gt 0 tan^(-1)((x)/(y))+tan^(-1)((y-x)/(y+x))=(pi)/(4)

Prove the following: 2\ tan^(-1)(3/4)-tan^(-1)((17)/(31))=pi/4

prove that: 2 tan ^(-1).(1)/(3) + tan^(-1).(1)/( 7) = (pi)/(4)

Prove the following: 4\ tan^(-1)(1/5)-tan^(-1)(1/(239))=pi/4

If tan^-1 ((x-3)/(x-4))+tan^-1((x+3)/(x+4))=pi/4 , find x

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

tan^(-1)((1)/(1+2))+tan^(-1)((1)/(1+6))+tan^(-1)(k)=tan^(-1)4 -(pi)/(4) then k is

Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11) (ii) Prove that : sin^(-1).(3)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)

Prove: 4 tan^(-1) (1/5 )- tan^(-1)( 1/239) = pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot