Home
Class 12
MATHS
(dy)/(dx)=(1)/(x log x)...

`(dy)/(dx)=(1)/(x log x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the integrating factor of the differential equation: x log x (dy)/(dx)+y=(2)/(x)logx, x gt 1

Solve (dy)/(dx)+(y)/(x)=log x.

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

The solution of (dy)/(dx)+(y)/(x)=(1)/((1+log x+log y)^(2)) is given by

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove : (dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that (dy)/(dx)=log((x-1)/(1+x))

If 'y=(x-1)log(x-1)-(x+1)log(x+1),p rov et h a t(dy)/(dx)=log((x-1)/(1+x))

Solve the differential equation x(dy)/(dx)=y(log y - log x +1) .

Solve: (dy)/(dx)=e^(x+y) (ii) log((dy)/(dx))=a x+b y