Home
Class 12
MATHS
lim(x rarr oo)log x...

`lim_(x rarr oo)log x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(log(1+x))/(x)

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

The value of : lim_(xrarroo)("log" x)/(x) is:

lim_(h rarr oo)log(sqrt(h-1)+sqrt(h))

7. lim_(x rarr0)(x(log x)^(2))/(1+x+x^(2))

lf lim_(x to 0) (sin x)/( tan 3x) =a, lim_( x to oo) (sinx)/x =b , lim_( x to oo)( log x)/x = c then value of a + b + c is

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(x rarr oo)e^(-x)x^(2)

Let f(x)=(log_e(x^2+e^x))/(log_e(x^4+e^2x)) . If lim_(xrarr oo) f(x)=l and lim_(xrarr-oo)f(x)=m , then