Home
Class 11
MATHS
If f(x)=x^(3)+alpha x^(2)+beta x+gamma ,...

If `f(x)=x^(3)+alpha x^(2)+beta x+gamma` ,`alpha, beta, gamma` are rational numbers and two roots of `f(x)=0` are eccentricities of a parabola and a rectangular hyperbola then `alpha+beta+gamma` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha, beta, gamma are the roots of x^(3)+ax+b=0 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If alpha, beta and gamma are the roots of the equation x^(3)-13x^(2)+15x+189=0 and one root exceeds the other by 2, then the value of |alpha|+|beta|+|gamma| is equal to

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If p''(x) has real roots alpha,beta,gamma . Then , [alpha]+[beta]+[gamma] is

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 +qx +r=0 then sum ( beta + gamma )^(-1) =

If alpha , beta , gamma are the roots of x^3 -7x + 6 =0 the equation whose roots are alpha + beta , beta + gamma , gamma + alpha is

If alpha , beta , gamma are the roots of x^3 -3x +1=0 then the equation whose roots are alpha - (1)/( beta gamma) , beta - (1)/( gamma alpha ) , gamma - (1)/( alpha beta ) is