Home
Class 12
MATHS
The fundamental period of the function f...

The fundamental period of the function `f(x)=sin((pi[x])/(12))+cos((pi [x])/(4))+tan((pi [x] )/(3))` is equal to (where[x] ) represents greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

Solve tan x=[x], x in (0, 3pi//2) . Here [.] represents the greatest integer function.

The period of sin""(pi[x])/12+cos""(pi[x])/4+tan""(pi[x])/3 , where [x] represents the greatest integer less than or equal to x is

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

If f(x)=(x^(3)+x+1)tan(pi[x]) (where, [x] represents the greatest integer part of x), then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Draw the graph of y = [sin x], x in [0, 2pi], where [*] represents the greatest integer function.