Home
Class 12
MATHS
Let Delta(x)=|{:(x+a,x+b,x+a-c),(x+b,x+c...

Let `Delta(x)=|{:(x+a,x+b,x+a-c),(x+b,x+c,x-1),(x+c,x+d,x-b+d):}|` and
`f_(0)^(2) Delta(x)dx=-16,` where a,b,c and d are in AP then the common difference of the AP is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and, int_(0)^(2) Delta(y)dy=-16 , where a,b,c,d are in A.P., then the common difference of the A.P. is equal to

Let Delta(x)=|(x+a,x+b,x+a-c),(x+b,x+c,x-1),(x+c,x+d,x-b+d)| and int_0^2 Delta(x)dx=-16, where a,b,c,d are in A.P. then the common difference (i) 1 (ii) 2 (iii) 3 (iv) 4

If Delta(x)=|{:(a,b,c),(6,4,3),(x,x^(2),x^(3)):}| then find int_(0)^(1) Delta (x) dx.

if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0), then show that a, b, c and d are in G.P.

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0), then show that a, b, c and d are in G.P.

Let f(x)=a+b|x|+c|x|^(2) , where a,b,c are real constants. The, f'(0) exists if

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0) , then show that a ,\ b ,\ c\ a n d\ d are in G.P.

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0) , then show that a ,\ b ,\ c\ a n d\ d are in G.P.

The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are different) is satisfied by (A) x=(a+b+c0 (B) x= 1/3 (a+b+c) (C) x=0 (D) none of these