Home
Class 12
MATHS
lim(x->0)(2^x-1)/((1+x)^(1/2)-1) is equa...

`lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) ((1+x)^(1/x)-e)/x is equal to

Evaluate lim_(x to 0) (2^(x)-1)/((1+x)^(1//2)-1)

lim_(x to 0) ((1 + x)^(5) -1)/((1 + x)^(3) - 1) is equal to

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

If lim_(xto0)(f(x))/(sin^(2)x)=8,lim_(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and " lim_(x to 0)(1+2f(x))^((1)/(g(x)))=(1)/(e)," then" lim_(x to 0)(1+f(x))^((1)/(2g(x))) is equal to

lim_(x rarr0)(x(e^(x)-1))/(1-cos x) is equal to

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(x->0)(1/(x^2)-1/(tan^2x))

(lim)_(x->oo)(sqrt(x^2-1))/(2x+1) is equal to a. 0 b . -1 c. 1//2 d. 1