Home
Class 12
MATHS
Find the inverse of A = [[1,0,0],[0,2,0]...

Find the inverse of A = `[[1,0,0],[0,2,0],[0,0,3]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the additive inverse of : 0

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[[x,0, 0],[ 0,y,0],[ 0, 0,z]] , is (a) [[x^(-1),0 ,0 ],[0,y^(-1),0],[ 0, 0,z^(-1)]] (b) x y z[[x^(-1),0 ,0],[ 0,y^(-1),0],[ 0, 0,z^(-1)]] (c) 1/(x y z)[[x,0, 0],[ 0,y,0],[ 0, 0,z]] (d) 1/(x y z)[[1, 0, 0],[ 0 ,1, 0],[ 0, 0, 1]]

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

Find the inverse of [(2, 0,-1),( 5, 1, 0),( 0, 1, 3)]

Using elementary transformations, find the inverse of the matrix [[2, 0,-1],[ 5, 1, 0],[ 0, 1 ,3]]

Using elementary transformations, find the inverse of the matrix [[1, 3,-2],[-3, 0,-1],[ 2, 1, 0]]

Using elementary transformations, find the inverse of the matrix [[1, 3,-2],[-3, 0,-5],[ 2, 5, 0]]

Find the rank of matrix.A= [[3,1,2,0],[1,0,-1,0],[2,1,3,0]]

Find the inverse of Matrix A=[{:(1,3,-2),(-3,0,-5),(2,5,0):}] by using elementary row transformation.

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]