Home
Class 12
MATHS
Let Delta=|[Ax^(2),x^(3),1],[By^(2),y^(3...

Let `Delta=|[Ax^(2),x^(3),1],[By^(2),y^(3),1],[Cz^(2),z^(3),1]|` and `Delta_(1)=|[Ax,By,Cz],[x^(2),y^(2),z^(2)],[yz,zx,xy]|`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta_(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta_(2)=|{:(A,B,C),(x,y,z),(yz,zx,xy):}| , then

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| .Then Delta_(1)Delta_(2) is equal to

show tha |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]| =0

If "Delta"=|(1,x,x^2),( 1,y, y^2),( 1,z, z^2)| , "Delta"_1=|(1, 1, 1),(yz, z x,x y), (x, y, z)| , then prove that "Delta"+"Delta"_1=0 .

solve |[1,yz,yz(y+z)],[1,zx,zx(z+x)],[1,xy,xy(x+y)]|

If x,y,z are dinstinct and |[x,x^3,x^4-1],[y,y^3,y^4-1],[z,z^3,z^4-1]|=0 then prove that (xyz)(xy+yz+zx)=(x+y+z)

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,b,,c),(x,,y,,z),(yz,,xz,,xy):}|

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0