Home
Class 12
MATHS
Prove that sin^{-1} x+cos^{-1} x = \pi/2...

Prove that `sin^{-1} x+cos^{-1} x = \pi/2, x \in [-1,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1)x+cos^(-1)x=pi/2 , if x in [-1,1]

Prove that : sin cot^(-1) tan cos^(-1) x=x

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Prove that : cos (2 sin^(-1) x) = 1-2x^2