Home
Class 12
MATHS
Evaluate : [ vec(x)   vec(y)   vec...

Evaluate :
`[ vec(x)   vec(y)   vec(z ) ]` =
( A ) `[ vecz   vecy   vecx ]`
( B ) `[ vecy   vecx   vecz ]`
( C ) `[ vecx   vecz   vecy ]`
( D ) `[ vecz   vecx   vecy ]`

Promotional Banner

Similar Questions

Explore conceptually related problems

[veci vec i vec i] = (A) 0 (B) 1 (C) vec i (D) vec k

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

x (vec a xxvec b) + y (vec b xxvec c) + z (vec c xxvec a) = vec r and [vec with bvec c] = (1) / (8) then x + y + z

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

If vec x+ vec cxx vec y= vec aa n d vec y+ vec cxx vec x= vec b ,w h e r e vec c is a nonzero vector, then which of the following is not correct? vec x=( vec bxx vec c+ vec a+( vec cdot vec a) vec c)/(1+ vec cdot vec c) b. vec x=( vec cxx vec b+ vec b+( vec cdot vec a) vec c)/(1+ vec cdot vec c) c. vec y=( vec axx vec c+ vec b+( vec cdot vec b) vec c)/(1+ vec cdot vec c) d. none of these

A vector vec d is equally inclined to three vectors vec a= hat i+ hat j+ hat k , vec b=2 hat i+ hat ja n d vec c=3 hat j-2 hat kdot Let vec x , vec y ,a n d vec z be thre vectors in the plane of vec a , vec b ; vec b , vec c ; vec c , vec a , respectively. Then vec xdot vec d=-1 b. vec ydot vec d=1 c. vec zdot vec d=0 d. vec rdot vec d=0,w h e r e vec r=lambda vec x+mu vec y+delta vec z

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b